MiR-377 promotes white adipose tissue inflammation and decreases insulin sensitivity in obesity via suppression of sirtuin-1 (SIRT1)

نویسندگان

  • Jie Peng
  • Yinghui Wu
  • Zhao Deng
  • Yuanfei Zhou
  • Tongxing Song
  • Yang Yang
  • Xiaming Zhang
  • Tao Xu
  • Mao Xia
  • Anle Cai
  • Zuhong Liu
  • Jian Peng
چکیده

Obesity is associated with a wide range of metabolic disorders including inflammation and insulin-resistance. Sirtuin-1 (SIRT1) is an important regulator of metabolic homeostasis and stress response pathways in white adipose tissue. However, involvement of microRNAs (miRNAs) in regulating SIRT1 during obesity-induced inflammation and insulin-resistance remains unclear. Here, we found that miR-377 was upregulated in adipose tissue and showed a negative correlation with SIRT1 in chronic high fat diet (HFD)-fed mice. MiR-377 belongs to a large miRNA cluster and functions as an important tumor suppressor in several human malignancies. Recently, it has also gained considerable attention in oxidative stress and diabetic nephropathy. In our present study, we found that overexpression of miR-377 decreased SIRT1 protein abundance and caused inflammation and insulin-resistance in differentiated 3T3-L1 cells. Conversely, miR-377 inhibition increased SIRT1 mRNA and protein levels, ameliorated inflammation and improved insulin sensitivity. Furthermore, we demonstrated that miR-377 targets the 3'-UTR of SIRT1 mRNA directly, and downregulates SIRT1 protein abundance. Inhibition of SIRT1 by EX527 significantly eliminated the downregulation of the inflammation and insulin-resistance levels induced by the miR-377 inhibitor. Furthermore, SIRT1 deficiency intensified adipose tissue inflammation and insulin-resistance, resulting in hepatic steatosis in chronic-HFD-fed mice. In conclusion, our findings suggest that miR-377 promotes white adipose tissue inflammation and decreases insulin sensitivity in obesity, at least in part, through suppressing SIRT1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIRT1 and energy metabolism.

Sirtuin 1 (SIRT1) is the most conserved mammalian NAD(+)-dependent protein deacetylase that has emerged as a key metabolic sensor in various metabolic tissues. In response to different environmental stimuli, SIRT1 directly links the cellular metabolic status to the chromatin structure and the regulation of gene expression, thereby modulating a variety of cellular processes such as energy metabo...

متن کامل

Sirtuin-1 is a nutrient-dependent modulator of inflammation

Inflammation accompanies obesity and its comorbidities-type 2 diabetes, non-alcoholic fatty liver disease and atherosclerosis, among others-and may contribute to their pathogenesis. Yet the cellular machinery that links nutrient sensing to inflammation remains incompletely characterized. The protein deacetylase sirtuin-1 (SirT1) is activated by energy depletion and plays a critical role in the ...

متن کامل

MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade

Sirtuin 1 (SIRT1) plays a critical role in the maintenance of metabolic homeostasis and promotes fat mobilization in white adipose tissue. However, regulation of SIRT1 during adipogenesis, particularly through microRNAs, remains unclear. We observed that miR-146b expression was markedly increased during adipogenesis in 3T3-L1 cells. Differentiation of 3T3-L1 was induced by overexpression of miR...

متن کامل

The Role of Inflammation and Changes of Adipose Tissue-Resident Immune Cells in Increasing the Risk of Cancer: A Narrative Review

The incidence of obesity, as a major health problem, has increased significantly over the past decades. This condition is associated with an increased risk of cancers, type 2 diabetes, and cardiovascular diseases. The current study aimed to investigate the effects of inflammation and changes of adipose tissue-resident immune cells on increasing the risk of cancer in obese individuals. In obesit...

متن کامل

Trans-chalcone enhances insulin sensitivity through the miR-34a/SIRT1 pathway

Objective(s): Trans-chalcone as the parent member of the chalcone series reduces circulating levels of insulin and glucose. However, the cellular mechanism of these effects is poorly understood. Sirtuin 1 (SIRT1) as a direct target of miR-34a controls homeostasis of glucose, and also improves insulin sensitivity. Therefore, the present study for the first time investigated the influence of tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017